

REDOX POTENTIAL :

From its routine measurement to its energetic meaning

ADSA® – ASAS MEETING (7th to 11th July 2008) INDIANAPOLIS

Presented by Jean-Philippe MARDEN (PhD.)

Redox measurements in ...

Soil

Wine

Cheese

Lakes, rivers, etc...

Deep oceans

No life without energy...

Life can be summarized in some thousands of chemical reactions.

They are involved in metabolic pathways which ensure both a transfer and a utilization of energy. ... like you I like fresh air, I breath and I release CO₂ and H₂O in the atmosphere ! ... but I have in my stomach, an efficient microbiota which is responsible for my energetic supply

Energy transfer (at the animal level)

How this energy is measured ?

The Gibbs Free Energy (ΔG) is defined as the energy available to accomplish a "useful" work (reaction)

 $\Delta G = \Delta G^{\circ} + RT \ln [Products / Reactants]$

 \downarrow $\Delta G = - nF \Delta E$

Oxido-reduction (redox) reactions

Most of the energy-transferring reactions involve an electron flux

Nernst Equation

 $\Delta E = \Delta E^{\circ} + RT/nF In$ [Oxidised sp./Reduced sp.]

What is Redox Potential (E_h) ?

The ability of a chemical species to give (reductant) or to capture electrons (oxidant)

The redox potential (E_h in volts) is measured as a potential difference (Δ E) with respect to the Standard Hydrogen Electrode (SHE)

According to the literature...

- In 1957 : <u>Broberg G.</u>, one of the first to publish on ruminal E_h values (*in vitro*, *in vivo* on sick/healthy animals)
- Followed by <u>Barry *et al.* (1977)</u>; <u>Marounek *et al.* (1982; 1987)</u>

 Regain interest in mid 90's : Mathieu *et al.* (1996) ; Broudiscou *et al.* (2001) ; Andrade *et al.* (2002) ; Giger-Reverdin *et al.* (2006)

According to the literature...

An "ex vivo" device to measure pH and E_h

No atmospheric contamination

Simultaneous sampling

Some results

Some results

DASCOR pH loggers with immersed sensors

Figure 2, Original Logger

Figure 4, Removing logger case (left: original model, right: new design)

Figure 7, Electrode shroud with attached weights, SIA Cable & Dongles

Adapted "ex vivo" method for screening

Real-Time monitoring of rumen gases

View of whole system

Hermetic cannula & security flasks

Data collection via software

Gas chromatograph

Gas sampler

Real-Time monitoring of rumen gases

Some results

Gathering more redox couples...

Biological significance of E_h

<u>E_h complementary to pH</u>

Sequential events during acidosis : pH & E_h Concept

Acknowledgements

Pr. Raymond MONCOULON

Pr. Corine BAYOURTHE

Pr. Xavier FERNANDEZ

Dr. Eric AUCLAIR (R&D Manager LFA)

Mr. David KALKHOVEN (Director LFA)

Life is induced by electrons... the movement of an electron is like a little current... thus, life is just a little electric current... All complex intermediates around this basic fact, are purely ornamental. (A. S. GYORGYI) Thanking you for your attention ...